

PII: S0040-4039(97)00038-5

A New Chiral Disulfonamide Ligand Derived from α-Amino Acid for Catalytic Enantioselective Cyclopropanation

Nobuyuki Imai,* Katsumasa Sakamoto, Masahiro Maeda, Kazushi Kouge, Kenji Yoshizane, and Junzo Nokami*

Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Okayama 700, Japan

Abstract: A new disulfonamide prepared from α -amino acid in five steps catalyzed cyclopropanation of allylic alcohols with Et₂Zn and CH₂I₂ to afford the corresponding cyclopropylmethanols in moderate to good enantioselectivites. In particular, the reaction of cinnamyl alcohol in the presence of a chiral disulfonamide **1k** afforded an excellent enantioselectivity (85% ee). © 1997 Elsevier Science Ltd. All rights reserved.

Development of a catalytic enantioselective cyclopropanation is one of the most important process because of the activities of cycloprapane-containing compounds.¹) The first and unique enantioselective Simmons-Smith cyclopropanation catalyzed by a C_2 -symmetrical disulfonamide-zinc or aluminum complex has been reported by Kobayashi and the reaction of cinnamyl alcohol with Et₂Zn and CH₂I₂ in the presence of (1R,2R)-1,2-N,N'-bis(4-nitrobenzenesulfonylamino)cyclohexane afforded 76% ee.²) Denmark optimized the conditions of the Simmons-Smith cyclopropanation (~ 80% ee) using the ligands reported by Kobayashi, and he examined several sulfonamides as chiral ligands (~ 79% ee) in the reaction of cinnamyl alcohol.³) Furthermore, Charette reported a catalytic cyclopropanation using the C_2 -symmetrical titanium catalyst and the reaction of cinnamyl alcohol gave the corresponding product with 90% ee.⁴) Methods using stoichiometric amount of a chiral auxiliary were developed by Charette and Katsuki although they gave excellent enantioselectivites (~ 94% ee).⁵) Improvement of enantioselectivity in catalytic Simmons-Smith cyclopropanation is still expected. We now describe preparation of a new type of disulfonamides (1) derived from α -amino acids and enantioselective cyclopropanation of an allylic alcohol (2) in the presence of a catalytic amount of the disulfonamide 1.

			R	_		
	Ph.	. ОН	R'SO ₂ N H	NSO₂R" H 1 _ F	ν⊾ [∰] %, ΩΗ	
	2a		El ₂ Zn, CH ₂ I ₂ in CH ₂ CI ₂ at -23 °C for 20 h		(2 <i>S</i> ,3 <i>S</i>)-3a	
Entry	1	R	<u>R'</u>	R"	Yield (%)	ee (%) ^b
1	1a	Me	Ph	Me	quant.	58
2	1 b	Me	Me	Ph	quant.	61
3	1 c	Me ₂ CH	Ph	Me	quant.	59
4	1 d	Me ₂ CH	Me	Ph	quant.	59
5	1 e	Me ₃ C	Ph	Me	quant.	42
6	1 f	Me ₃ C	Me	Ph	quant.	46
7	1 g	Ph	Me	Me	quant.	6 ^c
8	1 h	PhCH ₂	Me	Me	quant.	74
9	1i	PhCH ₂	Me	CF ₃	quant.	34
10	1 j	PhCH ₂	Me	p-MeC ₆ H ₄	93	82
11	1 k	PhCH ₂	Mie	<i>p</i> -NO ₂ C ₆ H ₄	quant.	85
12	11	PhCH ₂	Mac	2,4,6-Me ₃ C ₆ H	2 quant.	75

Table 1. Cyclopropanation of 2a in the Presence of Various Chiral Disulfonamides^a

a) The reactions were carried out with 1 mmol of 2a, 0.1 mmol of a chiral sulfonamide 1, 2 mmol of Et₂Zn, and 3 mmol of CH₂I₂ in 14 mL of anhydrous CH₂Cl₂. b) Determined by HPLC analysis (CHIRALCEL OD, 5% *i*-PrOH in hexane as an eluent). c) The enantiomeric isomer (2*R*,3*R*)-3 was obtained.

As a preliminary study, several disulfonamides $(1a\sim1h)$ were chosen to examine effect of aromatic ring for enantioselectivity in Simmons-Smith cyclopropanation and easily synthesized in five steps from the corresponding α -amino acids in good to excellent yields.⁶) The reaction of cinnamyl alcohol (2a) with Et₂Zn and CH₂I₂ was carried out in the presence of a catalytic amount of the disulfonamide 1 as the Kobayashi's procedures to afford (2S,3S)-2,3-methano-3-phenylpropanol ((2S,3S)-3a).^{2, 7}) The results are summarized in Table 1.

Enantioselectivities of in the reaction with 1a, 1b and 1c, 1d derived from L-valine and L-alanine, respectively, were slightly better than those with 1e, 1f derived from L-tert-leucine as shown in entries 1~6. Position of the benzene ring on the sulfonamide parts doesn't seem to be important for enantioselectivity among the disulfonamides prepared from L-alanine, L-valine, and L-tert-leucine (entry 1 vs. 2, entry 3 vs. 4, entry 5 vs. 6). The reaction of 2a in the presence of 1g prepared from L-glycine afforded the enantiomeric isomer (2R, 3R)-3 with a low enantioselectivity (6% ee, see entry 7). On the other hand, the reaction of 2a

with 1 h prepared from L-phenylalanine gave (25,35)-3a with a high enatioselectivity (74% ee, see entry 8). Next, another four disulfonamides $(1i \sim 1l)$ derived from L-phenylalanine were synthesized and the results of the reactions of 2a in the presence of $1i \sim 1l$ are indicated in Table 1 (entries $9 \sim 12$). In this series, trifluoromethanesulfonyl group is not effective for enantioselectivity (34% ee, entry 9). Interestingly, the disulfonamides possessed a substituted benzenesulfonyl group worked effectively to give higher enantioselectivities (see entries $10 \sim 12$). In particular, p-nitrobenzenesulfonyl and p-toluenesulfonyl substituted disulfonamides gave excellent enantioselectivities (85% ee and 82% ee, respectively).

The results of reactions of various allylic alcohols 2 in the presence of 1k are indicated in Table 2. The *trans*-oriented allylic alcohols $(2b\sim2e)$ were converted to the corresponding derivatives in execellent yields with moderate to good enantioselectivites $(54\sim71\% \text{ ee})$. A low enantioselectivity (39% ee) was obtained in the reaction of the *cis*-oriented allylic alcohol (2f). The enantiomeric excesses and absolute configurations of 3a, 3c, 3d, and 3f were determined by HPLC analysis using a Diecel OD column with 5% *i*-PrOH (2% *i*-PrOH for 3f) in hexane as an eluent.²) Those of 3b ($[\alpha]^{25}D + 9.6^{\circ}$ (*c* 1.88, CHCl₃)) and 3e ($[\alpha]^{25}D + 10.2^{\circ}$ (*c* 2.10, CHCl₃)) were determined to be 2*S*, 3*S* with 54% ee and 2*R*, 3*S* with 60% ee by comparison of the specific rotations ($[\alpha]^{20}D - 20.3^{\circ}$ (*c* 1.14, CHCl₃) for (2*R*,3*R*)-3b with 82%ee^{2a}) and ($[\alpha]^{20}D - 14.6^{\circ}$ (*c* 1.80, CHCl₃) for (2*S*,3*R*)-3e with 86% ee^{2b}).

	R ¹	Рћ ОН	ŊNSO₂C ₆ H₄- <i>p</i> -NO₂ HH 1k	R1 [//	<i>о</i> н
	² R ²	2	B ₂ Zn, CH ₂ I ₂ in CH ₂ CI ₂ at -23 °C for 20 h	R ² 3	1
Entry	2	R ¹	<u>R2</u>	Yield (%)	ee (%) ^b
1	2a	Ph	Н	quant.	85
2	2b	PhCH ₂ CH ₂	Н	97	54°
3	2 c	TrOCH ₂	Н	89	65
4	2d	Me ₂ PhSi	Н	85	71
5	2e	Bu ₃ Sn	Н	93	60°
6	2f	н	TrOCH ₂	88	39

Table 2. Cyclopropanation of Various Allylic Alcohols 2a~2f in the Presence of 1k^a)

a) All reactions were carried out with 0.5 mmol of an allylic alcohol 2, 0.05 mmol of the chiral sulfonamide 1k, 1 mmol of Et₂Zn, and 1.5 mmol of CH₂I₂ except entry 1 (see Table 1). b) Determined by HPLC analysis (CHIRALCEL OD). c) Determined by comparison of the specific rotation.^{2a, b})

A typical procedure of the cyclopropanation using 1k and 2a is as follows: To a colorless clear solution of 41 mg (0.1 mmol, 0.1 equiv.) of a disulfonamide 1k and 1.0 mL (1 mmol, 1 equiv.) of a 1.0M

solution of **2a** in CH₂Cl₂ in 14 mL of anhydrous CH₂Cl₂ were added dropwise at -50 °C 2.0 mL (2 mmol, 2 equiv.) of a 1.0M solution of Et₂Zn in hexane and 242 μ L (3 mmol, 3 equiv.) of CH₂I₂. After stirring for 20 h at -23 °C, the colorless suspension was quenched at the temparature with 0.5 mL of Et₃N, diluted with 50 mL of Et₂O, washed with 5 mL of brine, and dried over MgSO₄. The crude product was chromatographed on silica gel with a 1 : 1 mixture of EtOAc and hexane to afford 148 mg (quantitative yield, 85% ee) of (2*S*, 3*S*)-**3a**.

These results show that R, R', and R'' groups of the disulfonamide could be changed to various groups for controlling enantioselectivity in the Simmons-Smith cyclopropanation. It is noted that a new type of disulfonamides derived from α -amino acids are effective as chiral controller ligands in the cyclopropanation. This kind of disulfonamides possess unlimited possibility because excellent synthetic methodology of α -amino acids has been reported.

We still optimize the chiral disulfonamide derived from *L*-phenylalanine for the cyclopropanation of various allylic alcohols. We also examine further investigations about this type of chiral controller ligands prepared from various α -amino acids for catalytic enantioselective reactions such as Diels-Alder reaction, alkylation, and so on.

References and Notes

- For example: a) Murakami-Murofushi, K.; Shioda, M.; Kaji, K.; Yoshida, S.; Murofushi, H. J. Biol. Chem., 1992, 267, 21512; b) Gerwick, W. H.; Proteau, P. J.; Nagle, D. G.; Hamel, E.; Blokhin, A.; Slate, D. L. J Org. Chem., 1994, 59, 1243; c) Yoshida, M.; Ezaki, M.; Hashimoto, M.; Yamashita, M.; Shigematsu, N.; Okuhama, M.; Kohsaka, M.; Horikoshi, K. J. Antibiotics, 1990, 43, 748.
- a) Takahashi, H.; Yoshioka, M.; Shibasaki, M.; Ohno, M.; Imai, N.; Kobayashi, S. Tetrahedron, 1995, 51, 12013; b) Imai, N.; Sakamoto, K.; Takahashi, H.; Kobayashi, S. Tetrahedron Lett., 1994, 35, 7045; c) Imai, N.; Takahashi, H.; Kobayashi, S. Chem. Lett., 1994, 177; d) Takahashi, H.; Yoshioka, M.; Ohno, M.; Kobayashi, S. Tetrahedron Lett., 1992, 33, 2575.
- a) Denmark, S. E.; Christensen, B. L.; Coe, D. M.; O'Connor, S. P. Tetrahedron Lett., 1995, 36, 2215; b) Denmark, S. E.; Christensen, B. L.; O'Connor, S. P. Tetrahedron Lett., 1995, 36, 2219.
- 4. Charette, A. B.; Brochu, C. J. Am. Chem. Soc., 1995, 117, 11367.
- a) Charette, A. B.; Prescott, S.; Brochu, C. J. Org. Chem., 1995, 60, 1081; b) Kitajima, H.; Aoki, Y.; Ito, K.; Katsuki, T. Chem. Lett., 1995, 1113; c) Charette, A. B.; Juteau, H. J. Am. Chem. Soc., 1994, 116, 8166; d) Charette, A. B.; Turcotte, N.; Marcoux, J. -F. Tetrahedron Lett., 1994, 35, 513; e) Charette, A. B.; Marcoux, J. -F. Tetrahedron Lett., 1993, 34, 7157; f) Charette, A. B.; Cote, B.; Marcoux, J. -F. J. Am. Chem. Soc., 1991, 113, 8166.
- 6. The disulfonamide 1k was prepared as follows: L-(-)-Phenylalanine was reduced (NaBH₄, I₂ in THF; quantitative yield), dimesylated (MeSO₂Cl, Et₃N in CH₂Cl₂; 69% yield), and converted to the azide (NaN₃ in DMF; 79% yield). The azide was then hydrogenated (H₂/Pd on carbon in MeOH; quantitative yield) and treated with p-NO₂C₆H₄SO₂Cl and Et₃N in CH₂Cl₂ to afford 1k in 74% yield.
 1k: [α]²⁴D 38.5° (c 1.42, CHCl₃). ¹H NMR (CDCl₃) δ 2.32 (3H, s, CH₃SO₂), 2.68 (1H, dd, J = 9.8, 14.2 Hz, PhCH_A), 2.96 (1H, dd, J = 5.0, 14.2 Hz, PhCH_B), 3.00-3.12 (1H, m, CH_ANHSO₂C₆H₄-p-NO₂), 3.22-3.29 (1H, m, CH_BNHSO₂C₆H₄-p-NO₂), 3.57-3.68 (1H, m, MsNHCHCH₂NHSO₂C₆H₄-p-NO₂), 4.67 (1H, d, J = 8.4 Hz, MsNHCHCH₂NHSO₂C₆H₄-p-NO₂), 5.70 (1H, t, J = 6.0 Hz, MsNHCHCH₂NHSO₂C₆H₄-p-NO₂), 7.13-7.40 (5H, m, C₆H₅), 8.05, 8.35 (2H, 2H, d, d, J = 7.0, 7.0 Hz, C₆H₄-p-NO₂).
- 7. Remarkable difference of enantioselectivities between the zinc complexes (1-Zn) and the aluminum complexes (1-Al-Bu-i) was not observed. For example, cyclopropanation of 2a in the presence of the disulfonamide-aluminum complex 1h-Al-Bu-i, which was prepared from 0.1 mmol of 1h and 0.08 mmol of i-Bu₂AlH in 1,2-dichloromethane at 80 °C for 2 h, proceeded to afford (2S,3S)-3a with 68% ee.^{2c})